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Abstract 

The non-local aspects of interaction between quantum systems are investigated. These 
aspects are particularly conspicuous in quantum phenomena without a classical analog, 
such as the quantum effects of electromagnetic potentials. The study of the potential 
effect leads to the introduction of a new type of dynamical variable, the modular variable, 
which brings out the physical features of quantum mechanical non-locality. 

1. Introduction 

In the attempts to understand the basic aspects of quantum mechanics 
the study of quantum effects without a classical analog has played a 
particularly important role. Among such quantum effects the most familiar 
is the interference of material particles, such as electrons. As is well known, 
the analysis of the two-slit electron interference experiment has provided 
much insight into the physical meaning of the indeterminacy relations and 
has led to an improved terminology for the description of quantum 
phenomena (Bohr, 1949). In recent years the study of quantum effects 
without a classical analog has acquired renewed interest as a result of the 
discovery of the quantum effects of electromagnetic potentials (Aharonov & 
Bohm, 1959). This discovery not only revealed a whole set of interesting 
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phenomena that had hitherto been overlooked, but it also placed the ques- 
tion of the physical description of quantum behavior in a new light. In 
particular, it suggested a new approach to the problem of non-locality in 
the quantum domain. 

The following is an account of some of the work on the non-locality 
problem that has been inspired by the potential effect. The principal result 
of this work is the emergence of a new type of dynamical variable that seems 
to be the physical expression of the features of non-locality. It looks as if 
this variable, which we call the modular variable, is the key element of the 
physical description of quantum phenomena which have no classical analog. 

In Section 2 we review the potential effect. In Section 3 we show that this 
effect can be described as an exchange of an otherwise conserved dynamical 
quantity, namely modular momentum. In Section 4 we investigate some 
general properties of modular variables. In particular, we demonstrate that 
for these variables the quantum equations of motion are essentially different 
from the classical ones. In Section 5 we introduce and examine the concept 
of modular energy. Section 6 contains some concluding remarks. 

2. The Potential Effect 

The discovery of the potential effect resulted from an attempt to investigate 
the observability of potentials in the quantum domain. In order to get 
acquainted with the background of this question, let us first consider the 
problem of potentials in classical physics. For predicting the orbit of a 
particle it is sufficient to know the initial conditions and the forces that act 
on the particle and determine its acceleration. What, then, is the role of 
potentials ? 

The most familiar example is the electromagnetic case, where the 
potentials are used mainly as mathematical auxiliaries to express the field 
equations in a canonical form. The connection between the field quantities 
E, B and the potentials % A is given by the equations 

1 0A 
E = - V q ~  - - - -  B = V  x A 

c o t '  

Obviously, even after the values of E and B have been specified, ~o and A are 
still to some extent arbitrary. Different values of q~ and A may correspond 
to the same physical situation: if we perform a so-called gauge transforma- 
tion 

IOX A _ + A + V  X 
~v --> q~ c o t '  

where X is an arbitrary function of space and time, the forces and thus the 
accelerations will not be affected. Since therefore the orbits are left un- 
changed, such a gauge transformation will give rise to no observable effects 
in classical theory. 
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However, once the potentials are introduced we are faced with a curious 
situation. To see this, let us consider the following set-up: let R be a 
cylindrical region containing a magnetic field B, while outside this region 
both B and E are zero. We confine our attention to the field-free region S 
outside R. Any classical experiment performed in S will yield exactly the 
same results as the corresponding experiment performed in the vacuum. 
Yet, it is impossible to find a gauge in which cp and A are zero everywhere in 
S. This is due to the fact that the region S is not simply connected. In other 
words, there are circles in S which cannot be shrunk to a point without 
penetrating R. Along any such circle, according to Stoke's theorem, 

A.dl  = f (V • A).da = f B.da -# 0 

Thus, there exists in S a gauge invariant quantity, ~ A.dl, which is 
unobservable, since no classical experiment performed within the region 
can distinguish between the vacuum case where this quantity is zero and 
our case where it is different from zero. This peculiar state of affairs might 
have led a sceptical classical physicist to question the wisdom of introducing 
the electromagnetic potentials, since they lead to an unavoidable inequiva- 
lence of the mathematical description and the physics of multiply connected 
regions. 

We shall now see that in the quantum domain this discrepancy between 
the mathematics and the physics disappears. Indeed, in this domain there 
corresponds to every gauge invariant mathematical quantity a physical 
experiment that could measure its value. As a simple example, let us consider 
a situation involving only a scalar potential 9. Suppose a charged particle 
is placed in a region of space where the scalar potential is only a function of 
time. A practical way to do this is to enclose the particle in a Faraday cage 
inside which ~ is made time dependent by changing the amount of charge 
on the surface of the cage. 

Let us compare the mathematical description of this set-up in the classical 
and the quantum case. Classically, the behavior of the enclosed particle is 
governed by the Lorentz force 

Because of the space independence of ~o both E and B are zero. Varying the 
charge on the surface of the cage thus has no effect at all on the motion of the 
particle. 

Quantum mechanically, the situation at first sight appears different, since 
the basic equation contains the potentials rather than the fields. Indeed, 
the Schr6dinger equation for the case considered is 

H ~  = ih O~ H = H o + e~o, 
Ot 
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where Ho is the Hamiltonian describing the motion without the time- 
dependent potential ~(t). Thus, if r is the wave function describing the 
state of the particle before ~o is turned on, and r describes the state after ~o 
is turned on, r cannot equal r It is easy to verify by substitution that 
~b = r exp (-is),  where 

t 

= ~ ( t ) d t .  

tO 

Nevertheless, this difference between ~b and ~b0 is of no consequence in the 
present case. As is well known, ~b itself is unobservable; only bilinear 
combinations of ~b and ~b* have physical significance, and in such combina- 
tions the purely time-dependent phase disappears. For a long time this led 
to the belief that in quantum mechanics the potentials have no direct 
physical significance. 

The problem under discussion is a good testing ground for our way of 
thinking about quantum phenomena. As far as classical physics goes, the 
above analysis has exhausted the possibilities of experimenting with a 
charged particle in a field-free region. If  we take the customary view that 
the possibilities of measurement are in general more restricted in the quan- 
tum domain than in the classical domain, we would be inclined to think 
that the analysis has also exhausted the possible experiments in quantum 
physics. If, however, we regard the quantum description as of greater 
richness than the classical scheme, we would be less convinced that this was 
the case. We might then try to exploit the new potentialities of experimenta- 
tion, i.e. those quantum experiments that have no classical analog, for the 
purpose of demonstrating physical effects of the scalar potential. 

Actually we need not look very far. Consider two spatially separated 
Faraday cages. Clasically, the charged particle may be in one cage or the 
other, but not in both together. Quantum mechanically, however, there is a 
third possibility: the particle may be 'shared' simultaneously by both of the 
field-free regions. This corresponds to describing the state of the particle 
as a superposition of two wave packets, @1 -~ @2, where ~1 is different from 
zero only inside the first Faraday cage and r is different from zero only 
inside the second Faraday cage. Let us exploit this new physical possibility 
in the following way. In the first cage we produce a time-dependent potential; 
in the second cage we keep the potential fixed. The state of the charged 
particle is now r exp (-ie) + ~b2, where again 

t 

ef = li cp(t) dt .  

~o 

We see that in this case the difference between the state with the altered 
potential and the original state does not correspond to a multiplicative 
phase. The two states are therefore physically inequivalent. Indeed, if we 
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open the cages and bring the two wave packets to interfere with each other, 
the resulting interference pattern will depend on the relative phase c~ 
between the two packets and thus on the difference of potential between the 
two cages. 

There is a similar observable effect of the vector potential. If a charged 
particle passes through a region in which there is a vector potential A, the 
phase of its wave function increases by e/hc multiplied by the integral of the 
vector potential along the trajectory, S A. all. To make this phase change 
observable we consider an interference experiment around a shielded flux 
region. The flux produces a relative phase change of the wave packets 
passing on either side, which is proportional to the circulation of the vector 
potential outside the flux region. This phase change shifts the whole 
interference pattern. 

The idea that electromagnetic potentials may have observable effects in 
field-free regions gave rise to a stir among physicists. Apart from the 
natural surprise that it was still possible to uncover new general aspects of 
a topic that had been so thoroughly analyzed for more than thirty years, the 
initial disbelief arose from two sources. In the first place, there was a strong 
suspicion that the effects could not be consistent with the principles of 
quantum theory. In the second place, experimental data were available 
that seemed incompatible with the predicted effects. 

The consistency question was treated by Furry & Ramsey (1960), who 
showed that the effects of potentials, far from contradicting the principles of 
quantum theory, are necessary for consistency of that theory. If these effects 
did not exist, it would be possible, by measuring the potentials induced by 
an electron in a detecting device, to ascertain its path through an inter- 
ferometer without concomitant destruction of the interference pattern. 

The belief that the potential effects were incompatible with experimental 
data arose when Marton reported that when he performed his electron- 
interference experiments (Marton, et al., 1954) stray magnetic field had 
been present in his apparatus. If the potential effects existed, these fields 
apparently should have shifted the interference pattern about 1000 fringes 
60 times per second, and under these circumstances it was hard to understand 
how interference could have been observed at all. However, a closer 
analysis of Marton's set-up (Werner & Brill, 1960) showed that besides the 
phase change due to the vector potential, account had to be taken of the 
beam-bending effect of a magnetic field, and it turned out that the two 
magnetic effects almost completely compensated each other. It thus 
became clear that Marton's experiment should be considered an indirect 
confirmation of the predicted potential effects. 

In the last few years, several experiments have been made to check the 
quantum effects of the potentials (Chambers, 1960; Fowler, et al., 1961; 
Boersch, et al., 1960, 1961a, b, 1962a, b; MSllenstedt & Bayh, 1962a, b; 
Jaklevic et al., 1964a, b). These experiments have so far been confined to 
the magnetic case; they have given a clear demonstration of the existence 
of the effect. 

14 
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3. The Grating-solenoid Paradox and Modular Momentum 

The experiments that exhibit the potential effect show that although the 
field vanishes in the region accessible to the charged particle there is, 
nevertheless, some sort of interaction between the particle and the source. 
In classical physics an interaction can be defined as an exchange of an 
otherwise conserved physical quantity between the two interacting systems. 
What we mean by saying that classically the source of potential does not 
interact with a charged object moving in field-free regions, is that no 
momentum is exchanged between the source and the object. We may now 
ask: is it possible in the quantum case to consider the potential effect as an 
exchange of some conserved physical quantity between the charged particle 
and the source of potential ? 

Consider again the example of a particle being shared by two separate 
regions of space. To begin with, the quantum state is ~b0 = ~bl + ~b2. Then, 
by means of the two Faraday cages and a battery, a relative phase is intro- 
duced between the two wave packets, resulting in a state ~b~ = ~b 1 + 
exp (i=)~bz. Our question is: do there exist conserved quantities that have 
different values in ~b0 and ~b~ ? 

In view of the Ehrenfest theorem, according to which the equation of 
motion for the average of a quantum observable is similar to the equation 
of motion for the corresponding classical observable, one might argue: 
since classically the equations of motion in the multiply connected field-free 
region are exactly the same as for the vacuum case, all conserved quantities 
will remain unaffected by the source of potential. Therefore, there can be no 
observables that can distinguish between ~b 0 and ~b~. To check, we may 
compute the average of, say, the momentum p in the two states ~b0 and ~b~. 
This gives, as expected, (P)0 = ~P)~- For the average of the kinetic energy 
we find (pZ/2m)o = (pZ/2m)~, and a similar relation holds for the average 
of all other moments of momentum. Thus we see that the dynamical 
description of the potential effect, if possible at all, must involve new 
observables. 

In order to bring the question of new dynamical observables into sharper 
focus we shall investigate an experiment which is a modification of the 
vector potential experiment described in Section 2. Consider a set-up 
consisting of a hollow diffraction grating g so constructed that a set of 
solenoids s can be placed inside, as shown in Fig. 1. The slit width is w, the 
slit spacing is l, and the total number of slits is Ng. All the solenoids carry the 
same current, and the experiment is repeated for different values of that 
current. Electrons so prepared that the y-component of their momentum is 
practically zero are incident on the slits from the left. In the following we 
shall speak only of the y-component of momentum. 

When the current in the solenoids is zero, the resulting momentum 
distribution is well known; the observed values of momentum are integral 
multiples of the unitp0 = h/l. When a current flows, the allowed momentum 
values are (n + ~)P0, where ~ is ~b (modulo ch/e), �9 being the magnetic flux 
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trapped in a single solenoid. To see this, observe that the flux introduces an 
extra relative phase e between the waves emanating from two successive 
slits and thus that the directions in which constructive interference occurs 
are shifted from 

nA 
0o = arc sin 

to 

O~ = arc sin (n + ~) ;~ 
1 

The purpose of the experiment is to investigate the forceless interaction 
between the electron and the set of solenoids. That such an interaction exists 

~ g 

S t 

W 

x 
- -  lP" 

F i g u r e  1 

is shown by the alteration of the electron momentum when the solenoids 
are activated. In order to trace the momentum transfer as an electron 
passes through the slits, we must consider the momentum of the grating, 
p~, and the momentum of the set of solenoids p~. The solenoids are imagined 
to form a rigid system which is free to move with respect to the grating. 
We further assume that there is no interaction between the solenoids and 
the grating. Therefore, the grating can exchange momentum with the 
electron only. If  the extension of the grating is sufficiently large compared to 
the region where the electron can be found (that is, the number of slits that 
the electron strikes, _Are, is small compared to the total number of slits, Ng), 
the interaction between the grating and the electron is periodic in the 
y-coordinate of the grating. Thus the grating can exchange momentum 
with the electron only in integral multiples of p0. Conservation of momentum 
implies that the solenoids must absorb the residual momenta of the form 
(m - ~)Po, where m is an integer. 

Since the solenoids are confined to regions smaller than l, the uncertainty 
in the momentump~ must be large compared to P0. Thus, even for the most 
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favorable case, i.e. c~ = �89 the exchanged momentum can be small compared 
to the initial uncertainty in Ps. However, if we repeatedly send electrons 
through the set-up, we expect to accumulate arbitrarily large changes inps. 
We shall suppose the solenoids to be so massive that they suffer negligible 
change in position during the time when the interaction with all the 
electrons takes place. Thus, the vector potential produced by the solenoids 
remains essentially unchanged. Since the electron-solenoid interaction is 
mediated by this vector potential, the interaction is the same for each 
electron. It would appear, therefore, that the change in the momentum ps 
after Npassages may be estimated by assuming that each individual passage 
causes an independent random exchange of at least plus or minus �89 i.e. 
Aps ~ a/N�89 By choosing N large enough we can obtain an arbitrarily 
large Ap~. There is no contradiction between the assumption that the 
solenoids suffer negligible change of position during the passage of the 
electrons and the observability of Ap~, since Aps may be observed by allow- 
ing the solenoids to drift for a long time after all the electrons have passed. 

On the other hand, we may argue on the basis of the correspondence 
principle that such a Aps should not occur. Since the set of solenoids exerts 
no force on the electrons, in classical theory it will cause no change of the 
momentum of the electrons. The solenoids do not lose momentum by 
radiation, since they are massive. Hence, the momentum of the solenoid 
array does not change. 

Thus, quantum theory seems to predict that the electron-solenoid inter- 
action produces changes in the momentum of the set of solenoids that are 
large compared to the quantum uncertainty h/l, while classical theory 
predicts no change at all. 

In order to resolve the grating-solenoid paradox presented above we 
re-examine our notions concerning the change in the momentum distribu- 
tion produced by collisions. In doing so we shall uncover some general 
features that characterize interactions in the quantum domain. It is con- 
venient to introduce a characteristic set of functions of momentum f t , (p)  
whose average values determine the momentum distribution completely; 
the functions f t , (p)  can usually be chosen so that they satisfy simple 
equations of motion during the entire collision. A familiar example is 
provided by a potential interaction in which case 

similar equations hold for the higher moments of momentum (p"). 
We consider a special case of a forceless interaction: the gradient of the 

potential vanishes in a region S; the particle is so constrained that the 
probability of finding it outside S is zero. Then, in the classical case 

= = o 
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since in S 

dp ~V 
- -  ~ 0  

art dx 

Thus, the momentum distribution for any ensemble of particles moving in 
force-free regions remains unchanged. 

In quantum theory a more limited result holds; as shown in Appendix A 
the time derivative of each of the moments d(p")/dt vanishes. 

If the set of moments exhausted a characteristic set, the time derivative 
of the momentum distribution function would be zero in quantum theory as 
well as in classical theory. However, as the grating-solenoid paradox 
indicates, in quantum theory the momentum distribution function may 
change in cases of forceless interaction. We conclude that the set of moments 
does not exhaust the characteristic set. In the following we shall explore the 
properties of the additional members of the characteristic set. In particular, 
we shall investigate the qualitative difference in the quantum and classical 
equations of motion for the additional variables. That there is such a 
difference is evident since any additional variables are constant in the 
classical case, as shown above, whereas in the quantum case such variables 
may change. 

To find the missing members of the characteristic set, we return to the 
grating-solenoid paradox. To begin with, we observe that the moments 
argument of the preceding paragraph may be applied to the momentum 
distribution of the solenoid array, and therefore (ps 2) remains unchanged 
(see Appendix B). Hence, we must have been misled by the random walk 
argument which implied that (ps 2) increases indefinitely. 

How could the random walk argument fail ? We have assumed that as 
each electron goes by it exchanges momentum with the solenoid array and 
that the succeeding exchanges are independent of each other. The assump- 
tion of independence implies that the momentum exchange is governed by 
either a random or a linear walk. In a linear walk Aps would have been 
proportional to the number of collisions rather than to its square root; 
obviously, this would only sharpen the paradox. We may then feel forced 
to abandon the assumption of independence, which would imply that the 
solenoid array has some sort of quantum memory. The conventional way 
of understanding a concept of this type would be to study in detail the 
evolution of the wave function for the whole system. 

There is, however, the possibility of retaining the independence assump- 
tion if we abandon the classical notion that every interaction must be 
analyzed in terms of exchange of momentum. In other words, there may 
exist conserved quantities that are exchanged between the electrons and the 
solenoid array, and for which succeeding exchanges are independent of 
each other. We may further hope that these variables will complete the 
characteristic set {o~(p)}. In fact, such variables do exist and they provide 
the most natural description of forceless interactions. 

How are we to find these variables ? Our basic clue is that in terms of them 



222 YAKIR AMARONOV, et al. 

the random walk argument should be free of paradox. We therefore require 
such a variable to fulfill the following condition: its change after many 
collisions should be comparable to its change after one collision, so that the 
associated changes in momentum could remain bounded. Clearly, this 
condition suggests a bounded function of momentum. 

Consider the variable p modulo Po, that is 

p ~ npo + p  (modp0) 

where n is an integer and the remainderp (modp0) satisfies 

0 < p  (modp0) <P0 

Note that a random or linear walk of ordinary momentum can be thought of 
as taking place on an infinite straight line, whereas a walk of modular 
momentum can be thought of as taking place on a circle. 

To see that the modular momentum helps to characterize the momentum 
distributions before and after the forceless interactions in the grating- 
solenoid experiment, consider what happens to the modular momentum of 
an electron as it passes through the set-up. Since the initial value of the 
momentum itself is zero, the modular momentum has a definite value, zero, 
before the electron reaches the grating. Suppose first that no current flows 
in the solenoids. Then the value of the momentum after the electron has 
passed the grating can be n(h/l) only; thus p(modh/l)  is left unchanged. 
With a current flowing, the electron emerges with one of the momentum 
valuesp = (n + ~)h/l, where ~ = (~(modch/e). Hence, the electron modular 
momentum p(modh/l)  has been shifted to the value ~(h/l). The modular 
momentum of the solenoid array has been shifted correspondingly. In 
Appendix C we investigate this shift and show that the set of all modular 
momenta is characteristic. In contrast to the moments, the modular 
momentum is affected by the forceless interaction in such a way that its 
average value is changed. 

When the electron interacts with the grating alone (that is, when the 
solenoid current is turned off), the moments of both electron and grating 
momentum distribution are changed, while p(modh/l)  is unchanged. 
Consequently, the random walk argument applied to the grating correctly 
predicts that the grating will eventually display macroscopic motion 
provided the number of electrons is sufficiently large. The interaction of the 
electron with the solenoids has the opposite property: it changes the 
modular momenta of both electron and solenoid array while jt does not 
change the moments of momentum. 

4. General Properties o f  Modular Variables 

We shall now discuss some of the fundamental properties of modular 
variables. We first investigate the equation of motion of modular momentum 
under the influence of an external force. For  simplicity we discuss a one- 
dimensional problem with the Hamiltonian H = p2/2m + V(x). 
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Consider the operator related to p(modpo) 

Po sin 27r ~P 
A = f~  Po 

From the definition of A we see that in the limit Po -+ o% A approaches p. 
Thus, the equation of motion for A will approach the Newtonian equation 
of motion for Po -+ oo. 

In classical theory, 

d A  =/~cos2~ p - dycos2~vP~ (4.1) 
dt Po ax Po 

Thus, when the force F = -(dV/dx) is equal to zero at the position of the 
particle, A is a constant of the motion for all Po. 

In quantum theory, the situation is strikingly different. To see this, 
calculate d/dt(A). One gets 

d Po �9 P 

Using the SchrSdinger equation this gives 

d (A)=  - f r +l )+r  +l)~(x)V(x + l ) -  V(x) 
2 l dx 

For wave functions with sharp maxima at x0 and Xo + Iwe may remove the 
potential from the integral, evaluating it at the maxima. This gives 

~t (A = -  V(xo + l)-i V ( x ~ 1 7 6  (4.2) 
\ z - l a /  

Note that in the limit 1 -+ 0 the equation of motion for (A)  becomes 

,(x)/ dV\  = 

because 

V(x + l ) -  V(x) dV P~ sin 27r P-- ---~ p, - + _  
27r Po I dx 

r r + l) + r + t) r -+ r r 
2 

For finite l, 

v(xo + l) - V(xo) 
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appears as the quantity that determines the effect of the external field. Thus, 
the negative of this difference quotient of the potential function may be 
considered as a generalized non-local force which is responsible for changing 
the generalized non-local momentum A. In the absence of a potential 
difference between the points x0 and Xo + l, the dynamical variable A is 
conserved. Otherwise, there may be an "exchange' of A between the object 
and the source of potential. 

The quantum equation of motion for the average of ordinary momentum 
is identical to the classical equation of motion for p, but as we see by com- 
paring equations (4.1) and (4.2) the classical and the quantum equations of 
motion for modular momentum are essentially different. Thus, we cannot 
draw conclusions from the correspondence principle about averages of 
modular momentum. In particular, the classical variable A may be a 
constant of the motion under conditions when the quantum variable A is 
not conserved. This happens when the interaction between the particle and 
the source of potential is purely non-local. 

It is easy to show that the expectation values of the variable A in the set 
of states ~b~ where 

is 

~b~(x) - - f (x)  + exp ( i , ) f ( x  - l )  

Consequently, the modular momentum is sensitive to the relative phase 
between the two wave packets contained in ~b~. 

We thus see that even though the potential effect is a typical quantum 
effect with no classical analog, it can be described in a physical language 
which is very similar to that used in describing phenomena in the classical 
domain. Indeed, the potential effect now appears as a straightforward 
example of exchange of a non-local dynamical quantity, the modular 
momentum, with no exchange of local quantities. The possibility of such 
physical situations arises from the fact that the generalized non-local force 
may be non-vanishing even though the local force is zero wherever the 
particle can be found. 

The difference in the structure of the equations of motions is one significant 
expression of the fact that modular momentum plays qualitatively different 
roles in classical and quantum theory. Another way to appreciate this 
distinction is to compare Poisson brackets and commutators for modular 
quantities. 

Consider the observables 

A = Po sin 2~r tiP-, 
2rr P0 

B = x~~ sin27r x--- 
Z ~  X o 
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We see that the Poisson bracket of A and B is 

{A,  B }  = - c o s  P - - c o s  x 
P0 x0 

and that the commutator  of A and B is 

[A, Bl = 0 

if xoPo = h. Thus, the variables A and B may commute even though the 
Poisson bracket of  the corresponding classical variables is different from 
zero. 

This result shows that the connection between Poisson brackets and 
commutators breaks down for modular varaiables. In fact, while the 
equation 

{F(x), a(p)} = 0 

has no non-trivial solutions, the equation 

[F(x), G(p)] = 0 (4.3) 

has the following set of non-trivial solutions: 

F ( x )  = f ( x  + nl) ,  G(p)  = G p + n ~ (n = 1,2 . . . .  ) 

To see this we write 
G(p) = ~ g,  exp [in(pl/h)] 

1'1 

and we have 

[F(x), G(p)] = [F(x), ~ g, exp {in(pl/h)} 
n 

but 

[F(x), exp { in(pl/h) } ] = F (x )  exp [ in(pl/h) ] - exp [ in(pl/h) ] F (x )  

= exp [in(pl/h)] {exp [- in(pl /h)]  F (x )  exp [in(pl/h)] - r(x)} 

This is equal to zero since 

exp [- in(pl /h)]  r ( x )  exp [in(pl/h)] = F ( x  - nl) = F ( x )  

I t  is easily shown that these periodic functions are the only solutions of 
equation (4.3). 

The commutativity of  the variables 2 = x(mod/)  and/5  = p ( m o d h / l )  
suggests the introduction of a representation in which the operators 2 and/5 
both have a diagonal form. This modular representation will be investigated 
elsewhere'~. Introducing the operators M and N which take on only integer 
eigenvalues, we may write 

h 
p = m ~ + f i ,  x = N l + 2  

In an article 'Further Developments of the Modular Variables' (to be submitted for 
publication in the Physical Review, 1969). 
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Since 

we have 
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[M, exp {2rd(2/l)}] = i exp [27ri(2/l)], 

[N, exp {i(pI/h)}] = - i e x p  [i(ffl/h)l 

h 
A 2 A M  ~ I A p A N  ~ 

We thus see that the modular variables suggest a generalization of 
the familiar uncertainty relations AxAp  ~ h. The need for such a generaliz- 
ation for cases involving non-overlapping wave packets is evident, since 
(Ap)Z = @2)  _ ( p ) 2  is independent of the number of wave packets and the 
relative phase between them. 

5. Modular Energy 

In previous sections we have investigated the significance of modular 
momentum. Obviously, there are situations in which other conserved 
modular variables are exchanged. We now discuss an example of non-local 
forceless exchange of modular energy. 

Consider a particle at a fixed position. The particle has spin �89 and 
magnetic moment/~. It is under influence of a static magnetic field in the 
z-direction, B~ ~ In addition, the particle is perturbed by a weak time- 
dependent magnetic field in the x-direction, Bx(t) (see Fig. 2). The basic 
frequency of Bx(t), v = 1/T is chosen to be 2if, where ~ is the transition 
frequency of the spin, B~tz/2h. Since the Fourier transform of Bx includes 
only multiples of v, none of which equals ~7, no real transition will take place, 
and the energy of the system consisting of the static magnet plus the spin 
will be the same after B~ is switched offas it was before Bx was switched on 
(we have assumed that the period T' during which B~: is different from zero, 
is very large compared to 7"). In the following discussion we consider the 
experiment to be a "collision' between system I (static magnet + spin) and 
system II [array of magnets producing Bx(t)]. In this language we can say 
that no exchange of energy between systems I and II took place in the 
collision. 

Consider now a modified experiment in which a third system III con- 
sisting of an array of magnets producing a time dependent magnetic field 
B:(t) (see Fig. 3) is added. 

As indicated in Fig. 3, Bz and B~ are arranged so that they do not overlap 
at any time. Nevertheless, it is obviously possible to choose B~ in such a 
way that the spin of the particle will have flipped after T', i.e. after both 
collisions have taken place. This result, which is easily checked, raises some 
interesting questions concerning the over-all conservation of energy. 

In the collisions, the energy of system I has been changed by the definite 
amount h77. This energy must have come from system II or system III, or 
both. But system II, being periodic in time, could have transferred to system 
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L r j 
1 ~ q 
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I only an integer multiple of hr. Any such multiple differs from hr by at 
least �89 = hr. Thus, system III must have contributed to the energy of 
system I at least • Just as in the example discussed in Section 3, this 
result is rather paradoxical. 

Magnet III does not change at all the z-component of the particle's spin. 
Thus in each of its collisions with system I, magnet III leaves unchanged 
the Hamiltonian of system I (which is proportional to az). Therefore, it 
appears that system II[ could not affect the energy of system I in any way. 
Indeed, in any analogous classical situation, this argument would be 
sufficient to prove that no exchange of energy takes place between systems I 
and III. Yet, as we have seen, at least an energy hr has to be exchanged. 

On the background of the previous discussion, the solution of the paradox 
should be transparent. The classical argument that no energy can be 
exchanged between systems III and I is applicable only to the moments of 
the energy distribution of both systems (which indeed remain unaffected 

Bz 

r - 1  
I F-l 

L [ I  
F-l F-I t 

Figure 3 
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in the collisions). It is not applicable, however, to the systems' modular 
energy whose exchange is determined in a non-local way by the interaction 
between systems I and II. Note that here the non-locality is in time rather in 
space as was the case in the grating-solenoid experiment. In other words, 
if system I1 does not interact with system I, exchange of modular energy 
does not take place, while if system II does interact with system I, the 
exchange does take place, although the two interactions happen at different 
times. 

Imagine now a similar experiment in which system I consists of a large 
number of spins. As we have seen, the moments of the energy distribution 
of system III remain conserved in all collisions. Thus we may think of 
system III as a 'catalyzer' causing large changes in the behavior of systems 
I and II without accumulating a large effect on its own energy distribution. 

6. Conclusion 

We have shown that the modular variables are suitable for the description 
of quantum features of interaction. In particular, we have demonstrated 
the importance of their non-local characteristics in the quantum domain. 
In forthcoming articles we will show how these variables lead to a new view 
of well-known but not fully understood basic quantum effects, such as 
interference. We also show how these variables suggest new interesting 
quantum effects. 

We have that 

Then 

Appendix A 

. d 
th ~ p  = [p",H] = [p", V] = p[p"-~, V] + [p, V]p "-~ 

,4, 
ih ~ (p.) = (p~,, [p"-~, v]~) + (~, [p, V]p "-1 ~,) 

The conditions of our problem imply that the wave function ~h vanishes 
outside the region S. Thep m ~h must also vanish outside S. We now argue by 
induction that any expression of the form (4, [pk, V]X) vanishes for all 4 
and X vanishing outside S, for k ~> 1. This follows immediately from the 
identity 

(4, [Pk, V] X) = (P4, [pk-l, V] X) + (4, [P, V]P k-1 X) 
= (4', [p~-~, v] x) + (4, [p, v] x') 

and the observation that 
OV ,~, 

i(4, [p, v] x') = h (4, U~ x ] 

which vanishes since the gradient of V is zero where 4 and X' are non-zero. 
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Appendix B 

Conservation of total momentum implies that ((pg+ps+pe)Z) is 
unchanged. Since the interaction between the grating electron system and the 
solenoids is forceless, ((Ps +p~)Z) is unchanged. But 

((pg +p~ +p,)Z) : (ps 2) + ((pg +p~)2) + 2(p~(pg +Pe))  (A.1) 

In order to use equation (A. I), we shall show that the cross-term 

(Ps .  (Pg + Pe))  

remains zero throughout. We assume that initially (pe) = ( p g )  = 0 and the 
system is uncorrelated, which implies (pg.p~)= 0 and (p~ .ps)=  O. Since 
both the grating and the solenoids are very massive, we can describe their 
effects on the electrons to a good approximation in terms of potential 
functions depending only on the coordinates of the electrons. As a result, 
the final wave function for the whole system still factors: 

n 

Therefore, (Ps.(Pg +Pe))  = (Ps) .(Pg + P e )  even after collision. But 
(Pg + Pe) does not change because the interaction is forceless, so the cross- 
term remains zero. Hence, according to equation (A.1), (ps 2) remains 
unchanged. 

Appendix C 

Letp  = p(modh/I). Then it is easy to check that 

Pz = P l  + P 2 - P l  

where Pl and P2 are the momenta of the two interacting parts of a closed 
system. Since p =Pl  +P2 and therefore p =Pl  +P2 remain unchanged as a 
result of the interaction, we get 

p 2  f ina l  = p  - - p i  f i na l  

J 
Thus, if initially we knowp~ andp2 and then after the interaction is over we 
measure p final, the above equation permits us to predict p2 "na~. Applying 
this result to the electron-solenoid interaction we see that the change in 

Pso~ono,d is determined. 
It is obvious that p determines exp [i(pl/h)] and exp [-i(pl/h)], and vice 

versa. Since the average of exp [i(pl/h)] is the Fourier transform of the 
momentum distribution function, it follows that these averages for all l 
specify completely any distribution which can be Fourier transformed. 
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